Maria-Esther Vidal<p><strong>Leibniz Data Manager (LDM): How to manage Research Data effectively</strong></p><p> diesen Beitrag auf Deutsch lesen</p><p>Scientific discoveries rely on well-organized, accessible, and reusable research data. However, researchers often struggle with disconnected datasets, inconsistent metadata, and time-consuming data exploration.</p><p>The <a href="https://service.tib.eu/ldmservice/" rel="nofollow noopener noreferrer" target="_blank">Leibniz Data Manager</a> (LDM) helps solve these challenges by providing a FAIR-compliant research data management platform. LDM structures and connects research datasets using Knowledge Graphs (KGs), ensuring that data is Findable, Accessible, Interoperable, and Reusable (FAIR). Additionally, it integrates AI-assisted techniques to improve metadata enrichment and knowledge discovery, making research data more valuable and easier to work with.</p><p><strong>Why Use LDM? </strong></p><p>With the increasing demand for machine-readable, interoperable, and structured research data, LDM provides a powerful solution for researchers, data managers, and institutions. Whether it’s exploring datasets, enriching metadata, or linking knowledge across disciplines, LDM makes research data management <strong>s</strong>marter and more efficient.</p><p><strong>What Makes LDM Unique?</strong></p><p>LDM enables researchers to go beyond static repositories by:</p><ul><li><strong>Structuring research data with Knowledge Graphs (KGs)</strong> – Unlike traditional databases, KGs represent data and its meaning as nodes and their connections, allowing for more intelligent and flexible ways to search and explore datasets.</li><li><strong>Integrating FAIR Data Principles</strong> – LDM ensures that datasets follow standard metadata models, making them easier to find, link, and reuse across disciplines.</li><li><strong>Supporting AI-Assisted Metadata Enrichment</strong> – LDM incorporates entity linking techniques that automatically connect datasets to external knowledge sources such as Wikidata and the Open Research Knowledge Graph (ORKG), improving data completeness and discoverability.</li></ul><p></p><p><strong>Key Features of LDM</strong></p><ul><li><strong>FAIR-Compliant Metadata Management</strong> – LDM applies structured vocabularies like DCAT and DataCite to ensure datasets have well-defined metadata.</li><li><strong>Federated Search Across Knowledge Graphs</strong> – LDM allows researchers to explore and connect datasets across multiple sources, such as ORKG and Wikidata.</li><li><strong>Entity Linking & Metadata Expansion</strong> – By recognizing key terms and concepts, LDM <strong>a</strong>utomatically enriches metadata, improving dataset descriptions.</li><li><strong>Dataset Comparison & Visualization</strong> – Researchers can compare datasets, highlight differences, and analyze how data relates across multiple sources and repositories.</li><li><strong>Live Code Execution</strong> – LDM integrates Jupyter Notebooks, enabling researchers to analyze and manipulate data directly within the platform.</li><li><strong>Open-Source & Scalable Deployment</strong> – LDM can be deployed as an open-source solution via Docker containers, ensuring flexibility and scalability for research institutions.</li><li><strong>Customizable Instances</strong> – Institutions and projects can deploy tailored versions of LDM to match their specific workflows and data management needs.</li></ul><p>LDM is publicly available at <a href="https://service.tib.eu/ldmservice/" rel="nofollow noopener noreferrer" target="_blank">LDM Service</a>.</p> <p><strong>The LDM Team</strong></p><p><strong>Developers & Research Scientists:</strong> Mauricio Brunet, Enrique Iglesias, Dr. Ariam Rivas, Philipp D. Rohde, Dr. Ahmad Sakor, Samer Sakor<br><strong>Project Investigators:</strong> Dr. Angelina Kraft, Prof. Dr. Maria-Esther Vidal<br><strong>LDM Instances & Deployment:</strong> Susanne Arndt, Mathias Begoin<br><strong>Media & Graphics:</strong> Gabriela Ydler</p> <p><a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://blog.tib.eu/tag/research-and-development/" target="_blank">#ResearchAndDevelopment</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://blog.tib.eu/tag/research-data/" target="_blank">#ResearchData</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://blog.tib.eu/tag/research-data-repository/" target="_blank">#ResearchDataRepository</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://blog.tib.eu/tag/leibnizdatamanager/" target="_blank">#LeibnizDataManager</a> <a rel="nofollow noopener noreferrer" class="hashtag u-tag u-category" href="https://blog.tib.eu/tag/ldm/" target="_blank">#LDM</a></p>